Journal of Magnetic Resonan@d0, 120—-130 (1999)

» | ®
Article ID jmre.1999.1835, available online at http://www.idealibrary.conl Iile %I.

Time-Domain Quantification of Series of Biomedical Magnetic
Resonance Spectroscopy Signals

Leentje Vanhamme,* Sabine Van Huffel,* Paul Van Hecke,T and Dirk van Ormondt#

*Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Kard. Mercierlaan 94, 3001 Leuven, Belgium;
tBiomedical NMR Unit, Katholieke Universiteit Leuven, Gasthuisberg, 3000 Leuven, Belgium; and
FDepartment of Applied Physics, University of Technology of Delft, The Netherlands

Received October 21, 1998

Quantification of individual magnetic resonance spectroscopy
(MRS) signals is possible in the time domain using interactive
nonlinear least-squares fitting methods which provide maximum
likelihood parameter estimates under certain assumptions or using
fully automatic, but statistically suboptimal, black-box methods.
In kinetic experiments time series of consecutive MRS spectra are
measured in which information concerning the time evolution of
some of the signal parameters is often present. The purpose of this
paper is to show how AMARES, a representative example of the
interactive methods, can be extended to the simultaneous process-
ing of all spectra in the time series using the common information
present in the spectra. We show that this approach yields statis-
tically better results than processing the individual signals
separately. © 1999 Academic Press

Key Words: MRS data quantification; AMARES; time series;
SVD; nonlinear least squares.

INTRODUCTION

between the effective time origin and the first data point to b
included in the analysis, argl complex white Gaussian noise.
The bar ony indicates that this quantity represents the mode
function rather than the actual measurements. The amplitud
are proportional to the amount of each metabolite present al
need to be determined as accurately as possible. Other type:
model functions, like Gauss or Voigt, are also sometimes ust
to model the measured data. Typical of this application is th
presence of prior knowledge derived from biochemistry, spil
properties, ofin vitro studies. This biochemical prior knowl-
edge can normally be expressed as a set of linear relatio
between parameters of the same type.

To extract the parameters from a MRS signal, interactiv
time-domain methods exist that are iterative, require user il
volvement, allow the inclusion of prior knowledge, and have
no restrictions on the type of model function used. The algc
rithms minimize the difference between the nonlinear mode
function and the data. This approach leads to maximum like

In biochemical studies magnetic resonance spectroscdfiped (ML) parameter estimates if the underlying assumption
(MRS) signals are often acquired consecutively to monit§PNCcerning the model function and noise distribution are sa
metabolic changes over time. If some of the parameters i8fied- VARPRO () and the more recent AMARESY are
these spectra are related, it is advantageous to process Sfmples of these types of methods. On the other hand, stal
signals of the time series simultaneously taking these relatidif&lly suboptimal black-box methods exist that are fully auto
into account. In this paper we address how to extend a typifaflic (examples can be found i87)). Minimal user inter-
time-domain quantification method to the simultaneous prg¢tion, a model function restricted to a sum of dampe

cessing of a series of MRS signals.
In many practical situations, the measured data pgints

complex-valued sinusoids, and limited incorporation of prio
knowledge are inherent to this type of models. Recent varian

a MRS signal can be modeled as a sum of exponentiafve been proposed in which some forms of prior knowledg
damped complex-valued sinusoids (also called Lorentzians§an be imposed8(-10.

K
Yo=Yt €= 2 aeltel iz 4 e,
k=1

n=0,1,...,N—1, [1]
wherej = V-1, a, is the amplitude ¢, the phase, dthe
damping, and, the frequency of th&th sinusoidk =1, . ..,

K); t, = nAt + t, with At the sampling interval, the time
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This paper focuses on interactive methods, since they a
most often used in demandimg vivo applications. AMARES
is selected here to represent this class of methods. The first p
of the paper deals with the processing of a single MRS sign
with AMARES.

Often, in time series of MRS signals additional informatior
concerning the time evolution of the parameters is known. W
show here that taking this available prior knowledge intc
account yields statistically better results than processing tt
signals separately. Optimal use of common information in
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time series has been used previously for analysis of inversion-  n-1 K

recovery data X1). In that case, a model function with an S lys— D aeitettizmn 2 = |y — P|2, 2]
adjustable parameter for the time dependence was available. .- k=1

Here we account for common information in an optimal ML

way without the availability of such a model function. In thewithy = [y,, ...,yx_.]" the signal vector, = [a,€*, ...,

second part of the paper, we explain how AMARES can kege'*<]", and
extended to the simultaneous processing of all spectra in the

time series with imposition of prior knowledge on relations e-ditizafte . g(-dk+j2afte

between different spectra in a ML setting. In the literature a : " :

suboptimal approach consisting of applying AMARES twice is V= ’ ' ' (3]
sometimes used to analyze time series in case the common e(Tatizmiitn-y L. (= dkti2mi i

information among spectra consists of parameters which re-

main constant in timelQ). We compare this with the ML is anN X K matrix of full rank; T denotes the transpose.
approach. The methods presented are illustrated and testefio perform the actual minimization the functiongt —
using a Monte Carlo study on two different time series in th&l||* is split into a real and imaginary part and the resulting
third section of the paper. Finally, we show the advantagesfahctional|y® — W °I°||* is minimized where

e docog 27ty + py) - - - e %ocod2nfty + dy) Re( Yo)
e dosin2mfity + ¢y) - - - e osin2afity, + dy) Im(yo) a,
ve= : : Yo = S P e B R 6
e Mo 2mfity g + by) - - e HWicog2afty g + dy) Re(yn-1) ag
e visin(2afity g + bg) - - e MNIsin2afty g + di) Im(yn-1)
using the new optimal approach on @nvivo time series. Re(.) and Im(.) denote the real and imaginary parts of

Note that in the frequency domain, analysis of series abmplex quantity, respectively| denotes the Euclidean vec-
spectra can be performed using principal component analy®is norm, and.| denotes the modulus of a complex quantity.
(13). We also like to emphasize that the advantages of pro-AMARES uses a secant methath2gb (the most recent
cessing signals simultaneously using common information cgérsion of NL2SOL, as recommended i5) to minimize the
be exploited in the frequency domain too. Model fitting metteost function. The Jacobian is calculated analytically. An ac
ods in the frequency domain can be extended to the simuligmtage of usingn2gb is the fact that the algorithm allows the
neous processing of signals in exactly the same way as is deR@r to specify upper and lower bounds on the variables. W
for AMARES. It is also possible to extend the black-boxan yse this feature to impose the natural bounds on tl
methods to the simultaneous processing of spectrd4Ni(is  \4rjaples. The physical requirement of a positive damping c

shown how this can be done. Although these algorithms do ngl,q easily be imposed. Similarly, amplitudes, in the absence
perform as well in terms of precision as the extensions 9Imodulation, cannot become negative, whereas the upper &

interactive methods and still need some more fine tuning befqégver bounds on the frequencies are determined by the spect

they become rea_IIy practical, they p.e”o.”.“ better than a bIaCwfdth. Phases can be constrained to lie in any range betwe
box method applied on every signal individually and are prom-, _ ., o L
- . —180° and+180°. In general it is recommended to add thos
ising black-box techniques to further automate the MRS datd . . .
processing extra bounds on the variables in order to ensure maximu
' accuracy and robustnesks|. AMARES allows the imposition
QUANTIFICATION OF A SINGLE MRS SIGNAL of all kmd_s of linear relz?\tlong betwgen individual parameters
USING AMARES The major problem with this n_onlmear least-squares (NLLS
approach is the need for starting values for all unknown:
In case the signal is modeled by Eq. [1], the following cotMARES requires the user to provide starting values fo
function has to be minimized with respect to the unknowiiequencies and dampings. The starting values for the amp
amplitudes, dampings, frequencies, and phases in ordertides and phases are obtained by solving the least-squa

obtain ML estimates: problemy = VI, with the starting values for the frequencies
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and dampings inserted M. The starting values for the fre-
quencies and dampings are usually obtained by “peak-picking”
on the FT of the signal. Note that AMARES can accommodate
any model function and is therefore not restricted to exponen-
tially damped sinusoids.

The full description of AMARES, including the detailed de-
scription of all the different forms of prior knowledge that can be
imposed, is found ind). The usefulness of AMARES in demand-
ing in vivo applications is illustrated inl{, 1§. AMARES is
implemented within the software package MRW9(20, a
graphical user interface to facilitate the use of sophisticated anal-FIG. 1. Theoretical®P spectrum of adenosine triphosphate (ATP).
ysis routines for MRS data quantification in biomedical/biochem-
ical laboratories and the clinical environment.

EXTENSIONS OF AMARES TO QUANTITATE The relations present between spectra are expressed as r

TIME SERIES tions between the corresponding parameters. In principle, al
ML Use of Common Information Present in Spectra: relation between parameters of the same type can be express
AMARES We describe shortly the possibilities currently implemented i

The quantification of time series can be formulated in tgus extension of AMARES, denoted by AMARESom now

: . on. Each of the parameters can be left unconstrained or ke
mathematical way as follows. Suppose we h8wgignals, each

of which can be modeled by Eq. [1]. Théh sample of signal fixed. Itis glso pOSS|bIe_ to express a parameter as the sum qf
. : unconstrained and a fixed parameter of the same type. Sin
S, Yns IS then given by

larly, a parameter can be written as an unconstrained parame
ke of the same type multiplied with a fixed number. One can als
Vos = O Ay ldg(~tdetizniiot 5] express a variable as the sum of an unconstrained or a fix
1 parameter (of the same type), an unknown (and to be es
mated) shift, and a fixed shift. An unknown (and to be esti

The additional parameter indexindicates that the parameter™ated) ratio can also be used to express relations betwe
refers to thesth signal of the time series arid, denotes the parameters. Since the use of these unknown shifts or rati
number of peaks present in tisth signal. ML fitting of time leads to the introduction of a new variable, this new variabl
series with relations between spectra boils down to minimizirﬁ“ﬁaS to be shared by at least two parameters in order to redu
the cost function the total number of unknowns. We illustrate some of the prio

knowledge that can be imposed using an arbitrary example

a time series consisting of twdP signals of the adenosine

S N-1 Ks . .
TS fyee S gy el -tetizaton) 2 trlphpsphate (ATP) molecule. In Fllg. 1_ the spectrum of ATF
= o ns = ks obtained after Fourier transform is displayed. TReg, P,
resonances are split into two peaks (a doublet) Rpds split
= [[Yseries— "V seriedseriell > [6] into three peaks (a triplet) due to tldecoupling between the
phosphorus nuclear spins in the ATP molecule. The pric
where knowledge available between the parameters of these se\
Yseries= [Y1, - - -, Y&l = [You - - yYin-n - - - Yosr - yY(N—l)s]Ta
lseries: [|T1 EEEI vlg] = [allej¢1l! CEEI !aKlejd)Klv CEEI 7alSej¢1sa e 1aKSej¢KS]T1
v, 0 -+ ... 0]
0 . 0 e(_dls+j277fls)t0 . e(—sz+j27Tst)to
qfseries: : ‘PS : with \Ps = .
. . el-distj2afigtn-g L. e (~dks+j2mfkgtn-1
L 0 P
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FIG. 2. Time variation of the parameters used in Example A. Left: amplitude variation of an external standard (ES), phosphomonoesters (PME), in
phosphate (), phosphodiesters (PDE), and adenosine triphosphat@{, andy-ATP) as a function of time (signal number). The number in parentheses in tf
ATP multiplets refer to the peak number as defined in Fig. 1. Right: frequency variationaodPPME as a function of time (signal number).

peaks within one signal can, e.g., be expressed as follows Yalidation, Example B), an unknown increase in damping,
every signal in the time series,= 1, 2: and an unknown shift in frequenay,., occur for all peaks.
The prior knowledge for the dampings and frequencies ¢

1. @z = Ay Aus = Azsy Ags = 285, 875 = 8ss; A1y sy and the peaks of the second signal must be changed to the follo
as, are unconstrained, the other amplitudes are linked to them@, in order to express this extra information:

by a fixed ratio (1 or 2).

2.d, =dy, ...,d,s = dy; diis unconstrained and the 1.d,=dy; + Ay, ..., 07 =dy; + Ay dip, ..., dos
other dampings are linked to it by a fixed ratio of 1. are linked to the unconstrained parameter by introduction
3. foe = fig = Afeay fas = Tas = Afear fos = Tss — Afeay  Of @ Nnew variabled,,,, the unknown shift in damping.
fzs = fos — 2Apeeq; Aied = 16 Hz; fy, fa, and fs are 2. fo = fu + Avans F2o = f1s — Afpea + Avarzs -+, T2
unconstrained and the other frequencies are linked to themfhy— 2A,.q + Avay; f1, andf,, are linked tdf,,; 5, andf,, are
the fixed shiftA eq. linked tof,,, andfs,, fe,, andf,, are linked tofs, by a fixed

4, o= iy ..., P = Pis; Py iS unconstrained and theshift Ay,.q and by the unknown shift in frequeny,».
other phases are linked to it using a fixed ratio of 1.

The prior knowledge we impose is a set of linear relation
Suppose now, that due to a change in the field homogendigtween parameters and as a consequence we obtain a minim
after the measurement of the first signal (see also Numeritiah problem with linear equality constraints which we substitut

T
¥-ATP
o-ATP

B -ATP

f N . L T h L L ! ' A L L

25 2 15 1 0.5 -05 - -1.5 -2 -25 25 2 15 0.5 0
kHz

0
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FIG. 3. Left: first signal of time series used in Example A without noise. Right: noisy realizatipr-(3500) of signal number 22.
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FIG. 4. (Rel) CR bounds (calculated &, = 3500) of amplitudes, dampings, and frequencies of ATP(1), PRERNE, and ES of the first signal in the
time series of Example A are shown as a function of the number of consecutive signals of the time series that are processed simultaneously.

in the original functional in order to get an unconstrained NLL®r the amplitudes and phases are obtained by solying
problem. Currently the user has the choice between a Lorentzibid,, s = 1, ..., S, with the starting values for the frequen-
or Gaussian model function for every peak. cies and dampings inserted¥,, s= 1, ...,S.

The simultaneous processing of multiple signals of the time Note that analyzing the signals in one round is only useft
series increases the complexity of the optimization problewhen information on relations between different signals i
since the number of unknowns becomes larger. The neeqedsent. The newly developed method AMARE®Ill be
storage for the Jacobian increases dramatically. Alternatiirecorporated in a future release of the MRUI package.
optimization routines to alleviate these problems do exist.

Large scale methods (e.g., LANCELOZY, VE10 @22)) for  g,poptimal Use of Common Information Present in Spectra
solving large-scale nonlinear least-squares problems, eXplo"AMARE&

the so-called group partially separable structure of the nonlin-

ear least-squares problem. The exploitation of the latter struc-An alternative to AMARES, denoted here by AMARES
ture allows for efficient storage and calculation of gradienthat can be used to analyze time series in those cases wh
and Hessians2@). We are aware of these possible improvesome of the parameters remain constant in time, has be
ments, but since our main interest is the statistical propertiesd#scribed in the literaturel®). The method proceeds as fol-
the proposed method, we still ude2gb to minimize this cost lows. In a first round every signal of the time series is analyze
function. This means that here also the Jacobian is calculas&parately using AMARES. Mean values of all the paramete
analytically and that upper and lower bounds on the variablesown to remain constant in time are computed. Then a
can be imposed (see also the previous section). To perform #uglitional AMARES run is performed on every signal with
actual minimization,W, |, andy,, s = 1, ..., S are split these parameters fixed to the mean value found, in order
into a real and imaginary part as in Eq. [4]. The starting valuebtain more accurate parameter estimates for the time-varyi
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8oor TABLE 1
ool Failure Rates in Percent for Different Methods Used on Four
,I Consecutive Time Frames Consisting of 10 Signals Each as a
cool — AMARES /«' Function of the Noise Level o,
—~ ~ AMARES_ts ’
500k // o, Method Frame 1 Frame 2 Frame 3 Frame 4
5 oo} ) I 1000  AMARES 0 0 0 0
& 1 AMARES,, 0 0 0 0
300} i AMARES 0 0.25 0 0
e 1500 AMARES 0.75 0 0.25 0
200 ¥ AMARES,;, 1 0 0 0
/I/ AMARES 0 0 0 0
100~ e - 2000 AMARES 7.75 0.5 6.25 1.25
__t,/Z" AMARES,; 5.75 0.5 0 0
o PR 8 10 12 14 16 1§ 20 AMARES 4.75 0 1 0
Number of signals processed 2500 AMARES 27.5 12.25 30.25 9.75
FIG. 5. Mean value and standard deviation (denoted by the error bars) of AMARES,, 18.75 8 4.5 0
the CPU time in seconds needed by AMARES and AMARIES a function AMARES, 195 6.25 3.75 0
of the number of signals processed simultaneously (Example A). 3000 AMARES 57 26.5 55.25 215
AMARES,; 30.5 21.75 22.75 0.25
AMARES 41 25.25 21.25 0.5
i . 3500 AMARES 78 59 84.25 43.75
parameters. This procedure leads to ML estimateS as «. AMARES,. 49.75 42.25 41 25
Since only a limited number of signals are used to calculate the AMARES, 60.75 41 39.5 2

mean values, this approach may lead to biased estimates. _ _
One could think of ways to extend AMARESO processing Note. Used methods: AMARES applied to every signal separately
. . . . o : AMARES,, and AMARES..
series of signals in which other types of time information are
present, but the application of AMARESIs less straightfor- _ .
ward and more ad hoc in those cases and will not be pursuedn all examples each of the signals is modeled exactly by Et
here. [1]. Statistical parameters like the (relative) root-mean-square
error (RMSE) are computed from the estimated paramete
NUMERICAL VALIDATION (using 400 runs), excluding parameters belonging to signals ¢
which the method fails. A failure or bad run occurs if not all
In this section the methods presented are evaluated uspegks are resolved within specified intervals lying symmetri
Monte Carlo studies on two typical time series derived fromally around the exact frequencies. The calculated RMSE a

experimental data. compared to the theoretical CrariRao (CR) bounds, which
45 . ; ; . . : - 80— : ,
&
-~ CR(1) i
a0} —— CR{10) ,?l E 7or o = er(n
CR (40) %Q ,’\‘ ,'r,a\\l — or (10)
w [
=} ~~ o AMARES (1) @ bty &0 1 cr (40}
Q351 ALY a iy
S — 0 AMARES_ts (10) / ‘\ Y Toe. e 5 |:' 1 - — oamares (1)
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Zaor o ) ¢ o s O 2 i —— x amares_sts (10)
2 ¢t P ~ o = Y -
H Q\+’d\\ NPt ~. E a0t \
G % Qo 2 oo - © v
sy wa oo sy o 1 8 )
K
g ° Z30r e Q‘ 1
3 3
& 200 2 '
20t & i
X oo bxggs
Lo R oY @
15 101 eG‘@@OW:o-O@Q{)\Q\G/A} 00000007
o ‘ . . . ‘ ‘ ‘ B FERSEIERENS SO GAMNG Danad Soroeroos
0 5 10 15 20 25 30 35 40 1 6 11 16 21 26 31 36
Signal number Signal number

FIG.6. Comparison of methods on the time series of Example A. Left: Rel RMSE(3500) of the amplitude of PDE as a function of time (signal number
obtained by AMARES applied separately to each signal, AMARE®ur frames of 10 signals), and AMARESfour frames of 10 signals). Right: Rel RMSE
(o, = 3500) of the damping of Ras a function of time (signal number) obtained by AMARES applied separately to each signal, AMARES frames of
10 signals), and AMARES (four frames of 10 signals). Theoretical CR bounds are also depicted and denoted by CR. The number in brackets indica
number of signals that is processed simultaneously.
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FIG.7. Time variation of the parameters used in Example B. Top left: amplitude variation of inorganic phosphated$phocreatine (PCr), and adenosine
triphosphate ¢-, 8-, andy-ATP) as a function of time (signal number). Top right: damping variation,pPEr, and ATP ¢-, 8-, andy-ATP) as a function
of time (signal number). Bottom: frequency variation ¢f PCr, andy-ATP (peak number 1 in Fig. 1; the variation of the frequenciea-oind B-ATP (not

shown) is similar to that of-ATP) as a function of time (signal number). The number in parentheses in the ATP multiplets refers to the peak nhumber as d
in Fig. 1.

provide a lower bound on the standard deviation of an unbias€d are zero. In Fig. 3 we observe peaks from an extern:

estimator. standard (ES), PME,;Pphosphodiesters (PDE), and adenosin
triphosphate ¢-, 8-, andy-ATP). The left-hand side of Fig. 3
Example A shows a noiseless version of the first signal in the time serie
Monte Carlo studies were performed on a series of 40Due to the line broadening, the frequency splitting betwee
simulated signals, derived from 48P-signals of arex vivo the ATP multiplets is not visible from Fig. 3 but it is present.
perfused rat liver, acquired consecutively during administrAloise from a Gaussian distribution with standard deviation
tion of the fructose analogue 2,5-anhydranannitol (aHMol) is added to the signals. We use seven noise levels varying fol
(signals 4—21), subsequent administration of potassium cya-= 500 to 3500 in steps of 500. This implies that the SNF
nide (signals 22 to 30), and removal of aHMol (signals 31 #®r, €.g., the reference peak, expressed in decibel (dB) a
40) (24). The corresponding changes in the amplitude of tiftefined as 20 log(af) ranges from 57.6 to 18.7 dB. One noisy
phosphomonoesters (PME) (in casu, aHMolP esters), inorgarg@lization ¢, = 3500) is shown in Fig. 3. Noise levels of
phosphate (, and ATP peaks and in the frequency of ther, = 2000 or 2500 are typical fdn vivo experiments. In all
PME and Ppeaks are shown in Fig. 2. Peak linewidths remaiesults based on AMARES the following prior knowledge is
constant over the experiment. The experimental signals weiged:
recorded at 81.1 MHz (4.7 T Bruker Biospec) with a temporal
resolution of 100 s. Each signal consists of 128 complex datal. Within a signal: ATP prior knowledge as explained in the
points. The sampling interval is 0.2 nis,and¢,, k = 1, ..., subsection “ML use of common information present in spectre
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speed. On the one hand, results get more accurate as m
Fer signals are analyzed together. On the other hand, compu
time and storage requirements increase. To gain some insi
in this matter, we first analyze the possible improvements th
can be made using the AMARE@pproach by looking at the
theoretical CR bounds. We also perform a timing experimen
In Fig. 4 the (relative) CR bounds of the amplitude, damping
and frequency of the peaks of signal 1 are plotted versus tl
total number of signals that is processed simultaneously. Tl
accuracy of parameters which are constrained to remain co
7 TATP AT p-ATP stant over time (i.e., the dampings of all peaks, the frequenci
WWWWMMNWM of all peaks except the ones of PME angddhd the amplitude
of ES) increases substantially when more signals are proces:t
5 1 05 o 05 a s simultaneously. The accuracy of the amplitudes of PDE and
K is also increased significantly. Worth noting here is the fact th:
FIG. 8. Noisy realization ¢, = 5.2) of the first signal of the time series the accuracy of these peaks does not improve much further
used in Example B. processing more than about 10 signals at the same time.
Figure 5 shows the required CPU time (measured on a SU
ULTRA2 (200 MHz)). To process two signals individually
PME and Pequal. w?th AMARES we need approximately 1.9 s, comparedto 2
2. Between signals: the frequencies of ATP, PDE and E\glt.h AMARES,. When cvery SIgnaI 'S ahaly;ed sepgratel)
. . using AMARES the required CPU time varies linearly with the
the dampings of all peaks, and the amplitude of ES remain .
constant. qumper of signals progessed. For'AMARESe needgd CPU '
time increases approximately cubically. For processing 20 si
This leads to the following number of parameters to bmals at once 11 min are needed compared to 75 s when
estimated: (6nrsignals + 1) unknown amplitudes, 4 un-signals are processed at once. Based on these observati
known dampings, (2irsignals+ 5) frequenciesnrsignals concerning accuracy and required CPU time we divide ot
denotes the number of signals that is processed simultiame series into four consecutive time frames each of 10 signa
neously. We obtained one set of starting values for tl{go frame 1 consists of signals 1 to 10 of the time series, fran
frequencies and dampings by peak-picking the first signal 2fis made up of signals 11 to 20, and so on).
the time series. These starting values were used for all theOn each of these frames we compare three methods in t
signals in the time series. Monte Carlo study: AMARES on each signal separately
We have to choose how many signals will be analyzeMARES,, and AMARES
simultaneously. There is a trade-off between accuracy andn Table 1 the number of times one of these three algorithn

AMARES,", ¢, = 0,k =1, ...,K, t, = 0; damping of
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FIG. 9. Comparison of methods on the time series of Example B. Left: Rel RMSE=(5.2) of the amplitude of the-ATP peaks as a function of time
(signal number) obtained by AMARES applied separately to each signal and AMARES frames of 10 signals). Right: Rel RMSk (= 5.2) of the
amplitude of PCr as a function of time (signal number) obtained by AMARES applied separately to each signal and AMBRE®Bames of 10 signals).
Theoretical CR bounds are also depicted and denoted by CR. The number in parentheses indicates the number of signals that is processed simulta
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Example B

T T
Y-ATP o -ATP

A Monte Carlo study is performed on a series of 40 simu
lated signals, derived from 4id vivo *'P signals of the calf
muscle of a healthy human, acquired consecutively during ¢
initial rest period (signals 1-3), an isometric contraction (sig
nals 4-15), and the subsequent recovery period (signal 1(
40). The experimental signals were acquired at 81.1 MHz (4.
T Bruker Biospec) with a temporal resolution of 10 s, using :
5-cm-diameter surface coil positioned against the calf muscl
The corresponding changes in amplitude of theafd PCr
peaks and of the frequency of thegeak are shown in Fig. 7.
Also simulated is the often observed additional line broadenir
and frequency shift of all peaks during contraction, arising

PDE

L ) L L L L : I
25 2 15 1 05 -05 -1 -156 -2 -25

[}
knz e.g., from the altere®, homogeneity profile.
FIG. 10. Ex vivo *P signal from the perfused rat liver. On this figure, Each signal consists of 128 data points. The sampling inte
peaks from an external standard (ES), phosphomonoesters (PME), inorgara¢ is 0.3 mst, and¢,, k = 1, ... K, are zero. In Fig. 8 a

phosphate (f, phosphodiesters (PDE), and adenosine triphosphateit,  nojsy realization of the first signal of the simulated time serie
andy-ATP) can be observed. The broad resonance underlying the mentioriu?gddiS laved. Peaks from Pphos hocreatine. and adenosine
metabolites originates from phosphorous nuclei in less mobile molecules. Th played. i P ’

the time domain we truncate the first data points to reduce its influence on Iﬁ@h05ph3t§ &-, B-, andy-ATP) can be Qbserved. The' stan-
parameter estimates of the peaks of interest. dard deviatioro, used for the study is derived from tirevivo

time series and is equal to 5.2. This corresponds to a SNR
7.6 dB for the peaks in tha- and y-ATP doublets.
fails on the four different time frames as a function of the noise For the ATP peaks the prior knowledge as described und
standard deviation is shown. We see that both AMARESd Example A is used. The time dependencies imposed are t
AMARES,. have a lower failure rate than AMARES applied td°/lowing:

every signal individually. _ 1. The amplitudes of all the ATP peaks remain constant.
On the left-hand side of Fig. 6 we compare the three 5 - pampings and frequencies of ATP and PCr remain cor
methods in terms of the accuracy of the amplitude of PD&ant for signals 1 to 3. In signal 4 the frequencies of PCr an
for the different signals in the time series,(= 3500). The ATP are shifted with a fixed unknown amount which remain:
methods are compared to the theoretical CR bounds. In Fignstant throughout signal 15. Similarly, the dampings of PC
6 three different CR bounds are plotted, one correspondiggd ATP are increased from signal 4 throughout 15 with
to the analysis of each signal separately, one correspondif¥@d, unknown amount which remains constant. In signal 1
to analyzing the signals simultaneously in sets of 10 signathey return to their original values and remain constar
and one which shows the accuracy that can be obtaingdoughout signal 40.
when the 40 signals are processed together. We again se& No temporal information is available for the feak.

that we do not lose much accuracy by splitting up the time ) ,
series in four frames of 10 signals. AMARES anJhe prior knowledge can be taken into account by AMARES

s explained under ML Use of Common Information Present i

AMARES; lie close to the corresponding CR bounds. Not . o . ;
that the e[rratic behavior of AMARES in time frames 1 anépectra: AMARES: The time series is again analyzed in four
rames, consisting of 10 signals each. In this study we onl

3 is due to the fact that the failure rate of the method is Ve%mpare AMARES and AMARESsince there is no straight-

high (78 and 84.5%, respectively) in these frames and t Fvvard way to apply AMARES. in this case. In Fig. 9 we
the Rel RMSE shown is computed over a limited amount Q mpare the two methods in 'Eerms of the accuracy of th
successful runs. The erratic behavior disappears for Io%plitude ofa-ATP and PCr for the different signals in the
noise levels. When we compare AMARE&SNd AMARES:s  {ime series. The methods are compared to the theoretical
for all the parameters we see that the first follows the Ciyynds. Three different CR bounds are plotted, one corr
bounds more closely. As an example of this we show on tdgonding to the analysis of each signal separately, one cor
right-hand side of Fig. 6 the Rel RMSE of the damping of Riponding to analyzing the signals simultaneously in sets of 1
as a function of time. In time frames 1, 3, and 4, thgignals, and one which shows the accuracy that can be obtair
estimates for the damping of, Rre farther away from the when the 40 signals are processed together. We again see |
CR bound than the estimates obtained by AMAREShich we do not lose much accuracy by splitting up the time serie
closely follow the CR bound. The gain in accuracy obtainddto four frames of 10 signals. AMARES and AMARE$e

by using AMARES; is evident from these figures. close to the corresponding CR bounds. The gains in accura
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FIG. 11. Left: signal 24 of the time series fitted with AMARES. Right: signal 24 of the time series fitted with AMARES

obtained by applying AMARES are considerable for thoseconvergence problems either. However, since this is an expe
peaks. For the Ppeak, for which no time information is imental signal there is no real objective way of drawing
present, there is no significant gain in amplitude accuracy (nminclusions out of the small differences in fit obtained by
shown). The gain in amplitude accuracy of fgeand y-ATP AMARES, and AMARES.
peaks (not shown) is the same as for th& TP peaks.

In general, the gain in accuracy highly depends on the values CONCLUSIONS
and the time evolution of the parameters in the time series. For

every specific case, however, it is possible to calculate theQuantification of demandini vivo, individual MRS spec-
corresponding CR bounds, which gives an excellent indicatig® in the time domain is possible using interactive method
of the gain in accuracy that can by obtained by usinge AMARES. In this paper we present AMARESan exten-
AMARES;. sion of AMARES which allows us to take into account in a
statistically optimal way the common information present ir
EXPERIMENTAL TIME SERIES spectra of a time series. The method performs very well i
practical situations. AMARESleads to improved and more
We analyze here the experimental time series already debust estimates than the ones obtained by processing |
scribed under Example A. An example of a signal of this tim&ignals individually with AMARES since in the latter case the
series is shown in Fig. 10. information present between the spectra cannot be taken ir
In all the applied methods we omitted the first five dataccount. It is also straightforward to extend the ideas used
points to reduce the influence of the broad resonance undetlye derivation of the AMARES algorithm to frequency do-
ing the metabolites of interest. We analyzed the 40 signaiwin fitting methods. The same concepts as explained in tt
using AMARES applied on each signal individually. We impaper can also be applied to MRSI. This is the subject of futur
posed the same prior knowledge as under Example A; tresearch.
phases and the begin time were fixed, and we imposed the ATP
prior knowledge and constrained the dampings of PME and P ACKNOWLEDGMENTS
to be equal. In 2 cases of 40 the algorithm failed to converge.
In 3 other cases the PDE peak is obviously badly fitted. AnThe authors thank H.J.A. in 't Zandt of the Department of Radiology,
example of such a bad fit is shown on the left-hand side of Figniversity Hospital Nijmegen St. Radboud, for helpful discussions. LV is
11. We also fitted the time series with AMARE@ind we Ph.D. student funded by the IWT (Flemish Institute for Support of Scientific-
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of all peaks, and the amplitude of ES remain constant oveitiated by the Belgian State, Prime Minister's Office for Science, Technol
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. . . . ) oncerted Research Action (GOA) project of the Flemish Community, entitle
ing successful AMARES fit of the signal badly fitted with «\iodel-Based Information Processing Systems,” and by F.W.O. Grar

AMARES is shown. When we use AMARESthere are no G.0360.98.



130

10.

11.

REFERENCES

. J. W. C. van der Veen, R. de Beer, P. R. Luyten, and D. van
Ormondt, Accurate quantification of in vivo **P NMR signals using
the variable projection method and prior knowledge, Magn. Reson.
Med. 6, 92-98 (1988).

. L. Vanhamme, A. van den Boogaart, and S. Van Huffel, Improved
method for accurate and efficient quantification of MRS data with
use of prior knowledge, J. Magn. Reson. 129, 35-43 (1997).

. R. Kumaresan and D. Tufts, Estimating the parameters of expo-
nentially damped sinusoids and pole-zero modeling in noise, IEEE
Trans. Accoustics Speech Signal Processing ASSP 30, 833-840
(1982).

. H. Barkhuysen, R. de Beer, W. M. M. J. Bovée, and D. van Or-
mondt, Retrieval of frequencies, amplitudes, damping factors, and
phases from time-domain signals using a linear least-squares pro-
cedure, J. Magn. Reson. 61, 465-481 (1985).

. S. Y. Kung, K. S. Arun, and D. V. Bhaskar Rao, State-space and
singular-value decomposition-based approximation methods for
the harmonic retrieval problem, J. Opt. Soc. Am. 73, 1799-1811
(1983).

. S. Van Huffel, H. Chen, C. Decanniere, and P. Van Hecke, Algo-
rithm for time-domain NMR data fitting based on total least
squares, J. Magn. Reson. A 110, 228-237 (1994).

. Yuang-Ya Lin, P. Hodgkinson, M. Ernst, and A. Pines, A novel
detection-estimation scheme for noisy NMR signals: Applications
to delayed acquisition data, J. Magn. Reson. 128, 30-41 (1997).

. H. Chen, S. Van Huffel, D. van Ormondt, and R. de Beer, Parameter
estimation with prior knowledge of known signal poles for the
quantification of NMR spectroscopy data in the time domain, J.
Magn. Reson. A 119, 225-234 (1996).

. H. Chen, S. Van Huffel, A. J. W. Van den Boom, and P. P. J. Van
den Bosch, Subspace-based parameter estimation of exponen-
tially damped sinosoids using prior knowledge of frequency and
phase, Signal Processing 59, 129-136 (1997).

S. Van Huffel, Subspace-based exponential data modeling using
prior knowledge, in “Proceedings of the |IEEE Benelux Chapter
Signal Processing Symposium (IEEEBSPS),” pp. 211-214, Leuven,
Belgium (1998).

D. van Ormondt, R. de Beer, A. J. H. Marién, J. A. Den Hollander,
P. R. Luyten, and J. W. A. H. Vermeulen, 2D approach to quanti-
tation of inversion-recovery data, J. Magn. Reson. 88, 652—-659
(1990).

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

VANHAMME ET AL.

C. Decanniere, P. Van Hecke, F. Vanstapel, H. Chen, S. Van Huffel,
C. van der Voort, B. van Tongeren, and D. van Ormondt, Evaluation
of signal processing methods for the quantification of strongly
overlapping peaks in *P NMR spectra, J. Magn. Reson. B 105,
31-37 (1994).

A. C. Kuesel, R. Stoyanova, N. R. Aiken, Chun-Wei Li, B. S.
Szwergold, C. Shaller, and T. R. Brown, Quantification of reso-
nances in biological **P NMR spectra via principal component
analysis: Potential and limitations, NMR Biomed. 9, 93-104 (1996).

H. Chen, S. Van Huffel, A. J. W. Van den Boom, and P. Van den
Bosch, Extended HTLS methods for parameter estimation of mul-
tiple data sets modeled as sums of exponentials, in “Proc. 13th Int.
Conf. on Digital Signal Processing (DSP97),” pp. 1035-1038, San-
torini, Greece (1997).

J. Dennis and R. Schnabel, “Numerical Methods for Unconstrained
Optimisation and Nonlinear Equations,” Prentice Hall, Englewood
Cliffs, NJ (1983).

P. Gill, W. Murray, and M. Wright, “Practical Optimization,” Aca-
demic Press, San Diego (1988).

A. van den Bergh, L. Vanhamme, S. Van Huffel, and A. Heerschap,
Improving the SNR of glycogen detection in **C MRS by multiex-
ponential signal fitting using prior knowledge, in “MAG*MA, Sup-
plement to Volume V Number Il (ESMRMB ’97),” p. 190 (1997).

S. Mierisova, A. van den Boogaart, P. V. H. I. Takag, L. Vanhamme,
V. Mlynarik, and T. Liptaj, New approach for quantitation of short
echo time in vivo *H MR spectra of brain using AMARES, NMR
Biomed. 11, 32-39 (1998).

http://azur.univ-lyonl1.fr/tmr/tmr.html.
http://www.mrui.uab.es/mrui/mruiHomePage.html.

A. Conn, N. Gould, and P. L. Toint, LANCELOT, “A Fortran Package
for Large-Scale Nonlinear Optimization (Release A),” Series on
Computational Mathematics 17, Springer-Verlag, Berlin (1992).

P. L. Toint, VE10AD: A routine for large-scale nonlinear least
squares, Harwell Subroutine Library (1987).

P. L. Toint, On large-scale nonlinear least squares calculations,
SIAM J. Sci. Statist. Comput. 8, 416-435 (1987).

K. Bruynseels, N. Gillis, P. Van Hecke, W. Stalmans, and F. Van-
stapel, Metabolic effects of the fructose analogue 2,5-anhydro-d-
mannitol in perfused rat liver, in “Proceedings of the Society of
Magnetic Resonance, Third Scientific Meeting,” p. 1658, Nice,
France (1995).



	INTRODUCTION
	QUANTIFICATION OF A SINGLE MRS SIGNAL USING AMARES
	EXTENSIONS OF AMARES TO QUANTITATE TIME SERIES
	FIG. 1
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5

	NUMERICAL VALIDATION
	FIG.6
	TABLE 1
	FIG.7
	FIG. 8
	FIG. 9
	FIG. 10
	FIG. 11

	EXPERIMENTAL TIME SERIES
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

