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Quantification of individual magnetic resonance spectroscopy
MRS) signals is possible in the time domain using interactive
onlinear least-squares fitting methods which provide maximum

ikelihood parameter estimates under certain assumptions or using
ully automatic, but statistically suboptimal, black-box methods.
n kinetic experiments time series of consecutive MRS spectra are
easured in which information concerning the time evolution of

ome of the signal parameters is often present. The purpose of this
aper is to show how AMARES, a representative example of the

nteractive methods, can be extended to the simultaneous process-
ng of all spectra in the time series using the common information
resent in the spectra. We show that this approach yields statis-
ically better results than processing the individual signals
eparately. © 1999 Academic Press

Key Words: MRS data quantification; AMARES; time series;
VD; nonlinear least squares.

INTRODUCTION

In biochemical studies magnetic resonance spectros
MRS) signals are often acquired consecutively to mon
etabolic changes over time. If some of the paramete

hese spectra are related, it is advantageous to proce
ignals of the time series simultaneously taking these rela
nto account. In this paper we address how to extend a ty
ime-domain quantification method to the simultaneous
essing of a series of MRS signals.
In many practical situations, the measured data pointsyn of
MRS signal can be modeled as a sum of exponen

amped complex-valued sinusoids (also called Lorentzia

yn 5 y# n 1 en 5 O
k51

K

ake
jfke~2dk1j2pfk!tn 1 en

n 5 0, 1, . . . ,N 2 1, [1]

here j 5 =21, ak is the amplitude,f k the phase, dk the
amping, andf k the frequency of thekth sinusoid (k 5 1, . . . ,

); t n 5 nDt 1 t 0 with Dt the sampling interval,t 0 the time s
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etween the effective time origin and the first data point t
ncluded in the analysis, anden complex white Gaussian nois
he bar ony indicates that this quantity represents the m

unction rather than the actual measurements. The ampli
re proportional to the amount of each metabolite presen
eed to be determined as accurately as possible. Other ty
odel functions, like Gauss or Voigt, are also sometimes

o model the measured data. Typical of this application is
resence of prior knowledge derived from biochemistry,
roperties, orin vitro studies. This biochemical prior know
dge can normally be expressed as a set of linear rela
etween parameters of the same type.
To extract the parameters from a MRS signal, interac

ime-domain methods exist that are iterative, require use
olvement, allow the inclusion of prior knowledge, and h
o restrictions on the type of model function used. The a
ithms minimize the difference between the nonlinear m
unction and the data. This approach leads to maximum
ihood (ML) parameter estimates if the underlying assumpt
oncerning the model function and noise distribution are
sfied. VARPRO (1) and the more recent AMARES (2) are
xamples of these types of methods. On the other hand,

ically suboptimal black-box methods exist that are fully a
atic (examples can be found in (3–7)). Minimal user inter
ction, a model function restricted to a sum of dam
omplex-valued sinusoids, and limited incorporation of p
nowledge are inherent to this type of models. Recent var
ave been proposed in which some forms of prior knowle
an be imposed (8–10).
This paper focuses on interactive methods, since the
ost often used in demandingin vivo applications. AMARES

s selected here to represent this class of methods. The firs
f the paper deals with the processing of a single MRS s
ith AMARES.
Often, in time series of MRS signals additional informat

oncerning the time evolution of the parameters is known
how here that taking this available prior knowledge
ccount yields statistically better results than processing

ignals separately. Optimal use of common information in a
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121TIME-DOMAIN QUANTIFICATION OF BIOMEDICAL SPECTROSCOPY SIGNALS
ime series has been used previously for analysis of inver
ecovery data (11). In that case, a model function with
djustable parameter for the time dependence was ava
ere we account for common information in an optimal
ay without the availability of such a model function. In
econd part of the paper, we explain how AMARES can
xtended to the simultaneous processing of all spectra i

ime series with imposition of prior knowledge on relatio
etween different spectra in a ML setting. In the literatu
uboptimal approach consisting of applying AMARES twic
ometimes used to analyze time series in case the com
nformation among spectra consists of parameters whic

ain constant in time (12). We compare this with the M
pproach. The methods presented are illustrated and
sing a Monte Carlo study on two different time series in

hird section of the paper. Finally, we show the advantage

sing the new optimal approach on anin vivo time series.
Note that in the frequency domain, analysis of serie

pectra can be performed using principal component ana
13). We also like to emphasize that the advantages of
essing signals simultaneously using common information
e exploited in the frequency domain too. Model fitting me
ds in the frequency domain can be extended to the sim
eous processing of signals in exactly the same way as is

or AMARES. It is also possible to extend the black-b
ethods to the simultaneous processing of spectra. In (14) it is

hown how this can be done. Although these algorithms d
erform as well in terms of precision as the extension

nteractive methods and still need some more fine tuning b
hey become really practical, they perform better than a b
ox method applied on every signal individually and are pr

sing black-box techniques to further automate the MRS
rocessing.

QUANTIFICATION OF A SINGLE MRS SIGNAL
USING AMARES

In case the signal is modeled by Eq. [1], the following c
unction has to be minimized with respect to the unkno
mplitudes, dampings, frequencies, and phases in ord

C G 5 3
e2d1t0cos~2pf1t0 1 f1! · · · e2dKt0

e2d1t0sin~2pf1t0 1 f1! · · · e2dKt0

·
·
·

···
e2d1tN21cos~2pf1tN21 1 f1! · · · e2dKtN21c
e2d1tN21sin~2pf1tN21 1 f1! · · · e2dKtN21
btain ML estimates: p
n-

le.

e
he

a
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O
n50

N21

uyn 2 O
k51

K

ake
jfke~2dk1j2pfk!tnu 2 5 \y 2 Cl \ 2, [2]

ith y 5 [ y0, . . . , yN21]
T the signal vector,l 5 [a1e

jf1, . . . ,
KejfK] T, and

C 5 3
e~2d11j2pf1!t0 · · · e~2dK1j2pfK!t0

·
·
·

···
·
·
·

e~2d11j2pf1!tN21 · · · e~2dK1j2pfK!tN21
4 [3]

s anN 3 K matrix of full rank; T denotes the transpose.
To perform the actual minimization the functional\y 2
l\2 is split into a real and imaginary part and the resul

unctional \yG 2 CGlG\ 2 is minimized where

e(.) and Im(.) denote the real and imaginary parts
omplex quantity, respectively,\.\ denotes the Euclidean ve
or norm, andu.u denotes the modulus of a complex quant

AMARES uses a secant methoddn2gb (the most recen
ersion of NL2SOL, as recommended in (15)) to minimize the
ost function. The Jacobian is calculated analytically. An
antage of usingdn2gb is the fact that the algorithm allows t
ser to specify upper and lower bounds on the variables
an use this feature to impose the natural bounds on
ariables. The physical requirement of a positive damping
hus easily be imposed. Similarly, amplitudes, in the absen
-modulation, cannot become negative, whereas the uppe
ower bounds on the frequencies are determined by the sp
idth. Phases can be constrained to lie in any range bet
180° and1180°. In general it is recommended to add th
xtra bounds on the variables in order to ensure maxi
ccuracy and robustness (16). AMARES allows the impositio
f all kinds of linear relations between individual paramet
The major problem with this nonlinear least-squares (NL

pproach is the need for starting values for all unknow
MARES requires the user to provide starting values

requencies and dampings. The starting values for the a
udes and phases are obtained by solving the least-sq

~2pfKt0 1 fK!
~2pfKt0 1 fK!

·
·
·

~2pfKtN21 1 fK!
2pfKtN21 1 fK!

4 , y G 5 3
Re~ y0!
Im~ y0!·

·
·

Re~ yN21!
Im~ yN21!

4 , lG 5 F a1·
·
·

aK

G . [4
cos
sin

os
sin~

]

roblemy 5 Cl, with the starting values for the frequencies
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122 VANHAMME ET AL.
nd dampings inserted inC. The starting values for the fr
uencies and dampings are usually obtained by “peak-pic
n the FT of the signal. Note that AMARES can accommo
ny model function and is therefore not restricted to expo

ially damped sinusoids.
The full description of AMARES, including the detailed d

cription of all the different forms of prior knowledge that can
mposed, is found in (2). The usefulness of AMARES in deman
ng in vivo applications is illustrated in (17, 18). AMARES is
mplemented within the software package MRUI (19, 20), a
raphical user interface to facilitate the use of sophisticated
sis routines for MRS data quantification in biomedical/bioch
cal laboratories and the clinical environment.

EXTENSIONS OF AMARES TO QUANTITATE
TIME SERIES

L Use of Common Information Present in Spectra:
AMARESts

The quantification of time series can be formulated
athematical way as follows. Suppose we haveSsignals, eac
f which can be modeled by Eq. [1]. Thenth sample of signa
, yns, is then given by

yns 5 O
k51

Ks

akse
jfkse~2dks1j2pfks!tn. [5]

he additional parameter indexs indicates that the parame
efers to thesth signal of the time series andKs denotes th
umber of peaks present in thesth signal. ML fitting of time
eries with relations between spectra boils down to minimi
he cost function

O
s51

S O
n50

N21

uyns 2 O
k51

Ks

akse
jfkse~2dks1j2pfks!tnu 2

5 \yseries2 Cseriesl series\
2, [6]

here

yseries5 @y 1
T, . . . , y S

T# 5 @ y01, . . . , y~N21!1, .

l series5 @l 1
T, . . . , l S

T# 5 @a11e
jf11, . . . , aK1e

jf

Cseries5 3
C1 0 · · · · · · 0

0 ··· 0
·
·
·

Cs
·
·
··

·
·

···
·
·
·

4 with
0 · · · · · · CS
g”
te
n-

al-
-

a

g

he relations present between spectra are expressed a
ions between the corresponding parameters. In principle
elation between parameters of the same type can be expr

e describe shortly the possibilities currently implemente
his extension of AMARES, denoted by AMARESts from now
n. Each of the parameters can be left unconstrained or
xed. It is also possible to express a parameter as the sum
nconstrained and a fixed parameter of the same type.

arly, a parameter can be written as an unconstrained para
f the same type multiplied with a fixed number. One can
xpress a variable as the sum of an unconstrained or a
arameter (of the same type), an unknown (and to be
ated) shift, and a fixed shift. An unknown (and to be e
ated) ratio can also be used to express relations be
arameters. Since the use of these unknown shifts or

eads to the introduction of a new variable, this new vari
as to be shared by at least two parameters in order to r

he total number of unknowns. We illustrate some of the p
nowledge that can be imposed using an arbitrary examp
time series consisting of two31P signals of the adenosi

riphosphate (ATP) molecule. In Fig. 1 the spectrum of A
btained after Fourier transform is displayed. ThePa, Pg

esonances are split into two peaks (a doublet) andPb is split
nto three peaks (a triplet) due to theJ-coupling between th
hosphorus nuclear spins in the ATP molecule. The p
nowledge available between the parameters of these

, y0S, . . . , y~N21!S#
T,

. . . , a1Se
jf1S, . . . , aKSe

jfKS# T,

5 3
e~2d1s1j2pf1s!t0 · · · e~2dKs1j2pfKs!t0

·
·
·

···
·
·
·

e~2d1s1j2pf1s!tN21 · · · e~2dKs1j2pfKs!tN21
4 .

FIG. 1. Theoretical31P spectrum of adenosine triphosphate (ATP).
. .

K1,

Cs
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123TIME-DOMAIN QUANTIFICATION OF BIOMEDICAL SPECTROSCOPY SIGNALS
eaks within one signal can, e.g., be expressed as follow
very signal in the time series,s 5 1, 2:

1. a2s 5 a1s, a4s 5 a3s, a6s 5 2a5s, a7s 5 a5s; a1s, a3s, and
5s are unconstrained, the other amplitudes are linked to
y a fixed ratio (1 or 2).
2. d2s 5 d1s, . . . , d7s 5 d1s; d1s is unconstrained and th

ther dampings are linked to it by a fixed ratio of 1.
3. f 2s 5 f 1s 2 D fixed, f 4s 5 f 3s 2 D fixed, f 6s 5 f 5s 2 D fixed,

7s 5 f 5s 2 2D fixed; Dfixed 5 16 Hz; f 1s, f 3s, and f 5s are
nconstrained and the other frequencies are linked to the

he fixed shiftDfixed.
4. f 2s 5 f 1s, . . . , f 7s 5 f 1s; f 1s is unconstrained and th

ther phases are linked to it using a fixed ratio of 1.

uppose now, that due to a change in the field homoge
fter the measurement of the first signal (see also Nume

FIG. 2. Time variation of the parameters used in Example A. Left: am
hosphate (Pi), phosphodiesters (PDE), and adenosine triphosphate (a-, b-, an
TP multiplets refer to the peak number as defined in Fig. 1. Right: fre
FIG. 3. Left: first signal of time series used in Example A witho
for

m

by

ity
al

alidation, Example B), an unknown increase in dampingDvar1

nd an unknown shift in frequencyDvar2 occur for all peaks.
The prior knowledge for the dampings and frequencie

he peaks of the second signal must be changed to the fo
ng in order to express this extra information:

1. d12 5 d11 1 D var1, . . . , d72 5 d11 1 D var1; d12, . . . , d72

re linked to the unconstrained parameterd11 by introduction
f a new variableDvar1, the unknown shift in damping.
2. f 12 5 f 11 1 D var2, f 22 5 f 11 2 D fixed 1 Dvar2, . . . , f 72 5

51 2 2D fixed 1 Dvar2; f 12 andf 22 are linked tof 11; f 32 andf 42 are
inked to f 31, and f 52, f 62, and f 72 are linked tof 51 by a fixed
hift Dfixed and by the unknown shift in frequencyDvar2.

The prior knowledge we impose is a set of linear relat
etween parameters and as a consequence we obtain a min

ion problem with linear equality constraints which we subst

itude variation of an external standard (ES), phosphomonoesters (PME
ATP) as a function of time (signal number). The number in parentheses
ncy variation of Pi and PME as a function of time (signal number).
pl
dg-
ut noise. Right: noisy realization (sn 5 3500) of signal number 22.
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124 VANHAMME ET AL.
n the original functional in order to get an unconstrained N
roblem. Currently the user has the choice between a Lore
r Gaussian model function for every peak.
The simultaneous processing of multiple signals of the

eries increases the complexity of the optimization prob
ince the number of unknowns becomes larger. The ne
torage for the Jacobian increases dramatically. Altern
ptimization routines to alleviate these problems do e
arge scale methods (e.g., LANCELOT (21), VE10 (22)) for
olving large-scale nonlinear least-squares problems, e
he so-called group partially separable structure of the no
ar least-squares problem. The exploitation of the latter s

ure allows for efficient storage and calculation of gradi
nd Hessians (23). We are aware of these possible impro
ents, but since our main interest is the statistical propert

he proposed method, we still usedn2gb to minimize this cos
unction. This means that here also the Jacobian is calcu
nalytically and that upper and lower bounds on the varia
an be imposed (see also the previous section). To perfor
ctual minimization,C s, l s, and ys, s 5 1, . . . , S are spli

FIG. 4. (Rel) CR bounds (calculated atsn 5 3500) of amplitudes, dam
ime series of Example A are shown as a function of the number of co
nto a real and imaginary part as in Eq. [4]. The starting valueo
an

e

ed
e

t.

oit
-

c-
s
-
of

ed
s
he

or the amplitudes and phases are obtained by solvingys 5

sl s, s 5 1, . . . , S, with the starting values for the freque
ies and dampings inserted inC s, s 5 1, . . . , S.
Note that analyzing the signals in one round is only us
hen information on relations between different signal
resent. The newly developed method AMARESts will be

ncorporated in a future release of the MRUI package.

uboptimal Use of Common Information Present in Spec
AMARESsts

An alternative to AMARESts, denoted here by AMARESsts,
hat can be used to analyze time series in those cases
ome of the parameters remain constant in time, has
escribed in the literature (12). The method proceeds as f

ows. In a first round every signal of the time series is analy
eparately using AMARES. Mean values of all the parame
nown to remain constant in time are computed. Then
dditional AMARES run is performed on every signal w

hese parameters fixed to the mean value found, in ord

gs, and frequencies of ATP(1), PDE, Pi, PME, and ES of the first signal in t
cutive signals of the time series that are processed simultaneously.
pin
sbtain more accurate parameter estimates for the time-varying
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125TIME-DOMAIN QUANTIFICATION OF BIOMEDICAL SPECTROSCOPY SIGNALS
arameters. This procedure leads to ML estimates asS3 `.
ince only a limited number of signals are used to calculat
ean values, this approach may lead to biased estimate
One could think of ways to extend AMARESsts to processin

eries of signals in which other types of time information
resent, but the application of AMARESsts is less straightfor
ard and more ad hoc in those cases and will not be pu
ere.

NUMERICAL VALIDATION

In this section the methods presented are evaluated
onte Carlo studies on two typical time series derived f
xperimental data.

FIG. 5. Mean value and standard deviation (denoted by the error ba
he CPU time in seconds needed by AMARES and AMARESts as a function
f the number of signals processed simultaneously (Example A).

FIG. 6. Comparison of methods on the time series of Example A. Left
btained by AMARES applied separately to each signal, AMARESsts (four fra
sn 5 3500) of the damping of Pi as a function of time (signal number) ob
0 signals), and AMARESts (four frames of 10 signals). Theoretical CR b

umber of signals that is processed simultaneously.
e

e

ed

ing

In all examples each of the signals is modeled exactly by
1]. Statistical parameters like the (relative) root-mean-squ
rror (RMSE) are computed from the estimated param
using 400 runs), excluding parameters belonging to signa
hich the method fails. A failure or bad run occurs if not
eaks are resolved within specified intervals lying symm
ally around the exact frequencies. The calculated RMSE
ompared to the theoretical Crame´r-Rao (CR) bounds, whic

TABLE 1
Failure Rates in Percent for Different Methods Used on Four

onsecutive Time Frames Consisting of 10 Signals Each as a
unction of the Noise Level sn

sn Method Frame 1 Frame 2 Frame 3 Fram

000 AMARES 0 0 0 0
AMARESsts 0 0 0 0
AMARESts 0 0.25 0 0

500 AMARES 0.75 0 0.25 0
AMARESsts 1 0 0 0
AMARESts 0 0 0 0

000 AMARES 7.75 0.5 6.25 1.25
AMARESsts 5.75 0.5 0 0
AMARESts 4.75 0 1 0

500 AMARES 27.5 12.25 30.25 9.75
AMARESsts 18.75 8 4.5 0
AMARESts 19.5 6.25 3.75 0

000 AMARES 57 26.5 55.25 21.5
AMARESsts 30.5 21.75 22.75 0.25
AMARESts 41 25.25 21.25 0.5

500 AMARES 78 59 84.25 43.75
AMARESsts 49.75 42.25 41 2.5
AMARESts 60.75 41 39.5 2

Note. Used methods: AMARES applied to every signal separa
MARESsts, and AMARESts.

of

l RMSE (sn 5 3500) of the amplitude of PDE as a function of time (signal num
of 10 signals), and AMARESts (four frames of 10 signals). Right: Rel RMS

ned by AMARES applied separately to each signal, AMARESsts (four frames o
nds are also depicted and denoted by CR. The number in brackets in
: Re
mes
tai
ou
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126 VANHAMME ET AL.
rovide a lower bound on the standard deviation of an unb
stimator.

xample A

Monte Carlo studies were performed on a series o
imulated signals, derived from 4031P-signals of anex vivo
erfused rat liver, acquired consecutively during adminis

ion of the fructose analogue 2,5-anhydro-D-mannitol (aHMol)
signals 4–21), subsequent administration of potassium
ide (signals 22 to 30), and removal of aHMol (signals 3
0) (24). The corresponding changes in the amplitude of
hosphomonoesters (PME) (in casu, aHMolP esters), inor
hosphate (Pi), and ATP peaks and in the frequency of
ME and Pi peaks are shown in Fig. 2. Peak linewidths rem
onstant over the experiment. The experimental signals
ecorded at 81.1 MHz (4.7 T Bruker Biospec) with a temp
esolution of 100 s. Each signal consists of 128 complex

FIG. 7. Time variation of the parameters used in Example B. Top left:
riphosphate (a-, b-, andg-ATP) as a function of time (signal number). T
f time (signal number). Bottom: frequency variation of Pi, PCr, andg-ATP
hown) is similar to that ofg-ATP) as a function of time (signal number). T
n Fig. 1.
oints. The sampling interval is 0.2 ms,t 0 andf k, k 5 1, . . . , s
ed

0

-

a-
o
e
ic

n
re
l
ta

, are zero. In Fig. 3 we observe peaks from an exte
tandard (ES), PME, Pi, phosphodiesters (PDE), and adeno
riphosphate (a-, b-, andg-ATP). The left-hand side of Fig.
hows a noiseless version of the first signal in the time se
Due to the line broadening, the frequency splitting betw

he ATP multiplets is not visible from Fig. 3 but it is prese
oise from a Gaussian distribution with standard deviatiosn

s added to the signals. We use seven noise levels varying
n 5 500 to 3500 in steps of 500. This implies that the S

or, e.g., the reference peak, expressed in decibel (dB)
efined as 20 log(a/sn) ranges from 57.6 to 18.7 dB. One no
ealization (sn 5 3500) is shown in Fig. 3. Noise levels

n 5 2000 or 2500 are typical forin vivo experiments. In a
esults based on AMARES the following prior knowledge
sed:

1. Within a signal: ATP prior knowledge as explained in

plitude variation of inorganic phosphate (Pi), phosphocreatine (PCr), and adeno
right: damping variation of Pi, PCr, and ATP (a-, b-, andg-ATP) as a function
ak number 1 in Fig. 1; the variation of the frequencies ofa- andb-ATP (not
number in parentheses in the ATP multiplets refers to the peak number
am
op
(pe
he
ubsection “ML use of common information present in spectra:
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127TIME-DOMAIN QUANTIFICATION OF BIOMEDICAL SPECTROSCOPY SIGNALS
MARESts”, f k 5 0, k 5 1, . . . , K, t 0 5 0; damping o
ME and Pi equal.
2. Between signals: the frequencies of ATP, PDE and

he dampings of all peaks, and the amplitude of ES rem
onstant.

his leads to the following number of parameters to
stimated: (6nrsignals 1 1) unknown amplitudes, 4 u
nown dampings, (2nrsignals1 5) frequencies;nrsignals
enotes the number of signals that is processed sim
eously. We obtained one set of starting values for

requencies and dampings by peak-picking the first sign
he time series. These starting values were used for a
ignals in the time series.
We have to choose how many signals will be analy

imultaneously. There is a trade-off between accuracy

FIG. 8. Noisy realization (sn 5 5.2) of the first signal of the time seri
sed in Example B.

FIG. 9. Comparison of methods on the time series of Example B. L
signal number) obtained by AMARES applied separately to each sign
mplitude of PCr as a function of time (signal number) obtained by AM

heoretical CR bounds are also depicted and denoted by CR. The numbe
S,
in

e

ta-
e
of
he

d
nd

peed. On the one hand, results get more accurate as
ignals are analyzed together. On the other hand, com
ime and storage requirements increase. To gain some in
n this matter, we first analyze the possible improvements
an be made using the AMARESts approach by looking at th
heoretical CR bounds. We also perform a timing experim
n Fig. 4 the (relative) CR bounds of the amplitude, damp
nd frequency of the peaks of signal 1 are plotted versu

otal number of signals that is processed simultaneously
ccuracy of parameters which are constrained to remain
tant over time (i.e., the dampings of all peaks, the freque
f all peaks except the ones of PME and Pi, and the amplitud
f ES) increases substantially when more signals are proc
imultaneously. The accuracy of the amplitudes of PDE ani
s also increased significantly. Worth noting here is the fact
he accuracy of these peaks does not improve much furth
rocessing more than about 10 signals at the same time
Figure 5 shows the required CPU time (measured on a
LTRA2 (200 MHz)). To process two signals individua
ith AMARES we need approximately 1.9 s, compared to
ith AMARESts. When every signal is analyzed separa
sing AMARES the required CPU time varies linearly with
umber of signals processed. For AMARESts the needed CP

ime increases approximately cubically. For processing 20
als at once 11 min are needed compared to 75 s whe
ignals are processed at once. Based on these observ
oncerning accuracy and required CPU time we divide
ime series into four consecutive time frames each of 10 sig
so frame 1 consists of signals 1 to 10 of the time series, f

is made up of signals 11 to 20, and so on).
On each of these frames we compare three methods
onte Carlo study: AMARES on each signal separat
MARESts, and AMARESsts.
In Table 1 the number of times one of these three algori

Rel RMSE (sn 5 5.2) of the amplitude of thea-ATP peaks as a function of tim
and AMARESts (four frames of 10 signals). Right: Rel RMSE (sn 5 5.2) of the
ES applied separately to each signal and AMARESts (four frames of 10 signals
eft:
al
AR
r in parentheses indicates the number of signals that is processed simultaneously.
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ails on the four different time frames as a function of the n
tandard deviation is shown. We see that both AMARESts and
MARESsts have a lower failure rate than AMARES applied
very signal individually.
On the left-hand side of Fig. 6 we compare the th
ethods in terms of the accuracy of the amplitude of P

or the different signals in the time series (sn 5 3500). The
ethods are compared to the theoretical CR bounds. In
three different CR bounds are plotted, one correspon

o the analysis of each signal separately, one correspo
o analyzing the signals simultaneously in sets of 10 sig
nd one which shows the accuracy that can be obta
hen the 40 signals are processed together. We agai

hat we do not lose much accuracy by splitting up the t
eries in four frames of 10 signals. AMARES a
MARESts lie close to the corresponding CR bounds. N

hat the erratic behavior of AMARES in time frames 1 a
is due to the fact that the failure rate of the method is
igh (78 and 84.5%, respectively) in these frames and

he Rel RMSE shown is computed over a limited amoun
uccessful runs. The erratic behavior disappears for l
oise levels. When we compare AMARESts and AMARESsts

or all the parameters we see that the first follows the
ounds more closely. As an example of this we show on
ight-hand side of Fig. 6 the Rel RMSE of the damping oi
s a function of time. In time frames 1, 3, and 4,
stimates for the damping of Pi are farther away from th
R bound than the estimates obtained by AMARESts, which
losely follow the CR bound. The gain in accuracy obtai

FIG. 10. Ex vivo 31P signal from the perfused rat liver. On this figu
eaks from an external standard (ES), phosphomonoesters (PME), ino
hosphate (Pi), phosphodiesters (PDE), and adenosine triphosphate (a-, b-,
ndg-ATP) can be observed. The broad resonance underlying the men
etabolites originates from phosphorous nuclei in less mobile molecul

he time domain we truncate the first data points to reduce its influence
arameter estimates of the peaks of interest.
y using AMARESts is evident from these figures. c
e

e
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g

ng
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xample B

A Monte Carlo study is performed on a series of 40 si
ated signals, derived from 40in vivo 31P signals of the ca

uscle of a healthy human, acquired consecutively durin
nitial rest period (signals 1–3), an isometric contraction (
als 4–15), and the subsequent recovery period (signa
0). The experimental signals were acquired at 81.1 MHz
Bruker Biospec) with a temporal resolution of 10 s, usin

-cm-diameter surface coil positioned against the calf mu
he corresponding changes in amplitude of the Pi and PC
eaks and of the frequency of the Pi peak are shown in Fig.
lso simulated is the often observed additional line broade
nd frequency shift of all peaks during contraction, aris
.g., from the alteredB0 homogeneity profile.
Each signal consists of 128 data points. The sampling i

al is 0.3 ms,t 0 andf k, k 5 1, . . . , K, are zero. In Fig. 8
oisy realization of the first signal of the simulated time se

s displayed. Peaks from Pi, phosphocreatine, and adenos
riphosphate (a-, b-, andg-ATP) can be observed. The sta
ard deviationsn used for the study is derived from thein vivo

ime series and is equal to 5.2. This corresponds to a SN
.6 dB for the peaks in thea- andg-ATP doublets.
For the ATP peaks the prior knowledge as described u

xample A is used. The time dependencies imposed ar
ollowing:

1. The amplitudes of all the ATP peaks remain consta
2. Dampings and frequencies of ATP and PCr remain

tant for signals 1 to 3. In signal 4 the frequencies of PCr
TP are shifted with a fixed unknown amount which rema
onstant throughout signal 15. Similarly, the dampings of
nd ATP are increased from signal 4 throughout 15 wi
xed, unknown amount which remains constant. In signa
hey return to their original values and remain cons
hroughout signal 40.

3. No temporal information is available for the Pi peak.

he prior knowledge can be taken into account by AMARts
s explained under ML Use of Common Information Prese
pectra: AMARESts. The time series is again analyzed in f

rames, consisting of 10 signals each. In this study we
ompare AMARES and AMARESts since there is no straigh
orward way to apply AMARESsts in this case. In Fig. 9 w
ompare the two methods in terms of the accuracy of
mplitude ofa-ATP and PCr for the different signals in t

ime series. The methods are compared to the theoretica
ounds. Three different CR bounds are plotted, one c
ponding to the analysis of each signal separately, one c
ponding to analyzing the signals simultaneously in sets o
ignals, and one which shows the accuracy that can be ob
hen the 40 signals are processed together. We again se
e do not lose much accuracy by splitting up the time se

nto four frames of 10 signals. AMARES and AMARESts lie

nic

ed
In
he
lose to the corresponding CR bounds. The gains in accuracy



o se
p is
p (n
s
p

alu
a . F
e th
c tio
o sin
A

y d
s im
s

ata
p er
i na
u m-
p ; th
p A
p d
t rg
I . A
e Fi
1
i in
s in
o ov
t
e w
n nd
i h
A

c xper-
i ing
c by
A

-
t ods
l -
s a
s t in
s ll in
p re
r g the
s the
i n into
a ed in
t -
m this
p ture
r

ogy,
U is a
P tific–
T h the
F y the
B 24),
i nol-
o rch-
e Pro-
c ” by a
C titled
“ rant

AR

129TIME-DOMAIN QUANTIFICATION OF BIOMEDICAL SPECTROSCOPY SIGNALS
btained by applying AMARESts are considerable for tho
eaks. For the Pi peak, for which no time information
resent, there is no significant gain in amplitude accuracy
hown). The gain in amplitude accuracy of theb- andg-ATP
eaks (not shown) is the same as for thea-ATP peaks.
In general, the gain in accuracy highly depends on the v

nd the time evolution of the parameters in the time series
very specific case, however, it is possible to calculate
orresponding CR bounds, which gives an excellent indica
f the gain in accuracy that can by obtained by u
MARESts.

EXPERIMENTAL TIME SERIES

We analyze here the experimental time series alread
cribed under Example A. An example of a signal of this t
eries is shown in Fig. 10.
In all the applied methods we omitted the first five d

oints to reduce the influence of the broad resonance und
ng the metabolites of interest. We analyzed the 40 sig
sing AMARES applied on each signal individually. We i
osed the same prior knowledge as under Example A
hases and the begin time were fixed, and we imposed the
rior knowledge and constrained the dampings of PME ani

o be equal. In 2 cases of 40 the algorithm failed to conve
n 3 other cases the PDE peak is obviously badly fitted
xample of such a bad fit is shown on the left-hand side of
1. We also fitted the time series with AMARESts and we

mposed in addition to the prior knowledge present with
ignal that the frequencies of ATP, PDE, and ES, the damp
f all peaks, and the amplitude of ES remain constant

ime. When we analyzed the signals using AMARESts we
ncountered no convergence problems and all the signals
icely fitted. On the right-hand side of Fig. 11 the correspo

ng successful AMARESts fit of the signal badly fitted wit

FIG. 11. Left: signal 24 of the time series fitted with AM
MARES is shown. When we use AMARESsts there are no G
ot

es
or
e
n

g

e-
e

ly-
ls

e
TP
P
e.
n
g.

a
gs
er

ere
-

onvergence problems either. However, since this is an e
mental signal there is no real objective way of draw
onclusions out of the small differences in fit obtained
MARESts and AMARESsts.

CONCLUSIONS

Quantification of demandingin vivo, individual MRS spec
ra in the time domain is possible using interactive meth
ike AMARES. In this paper we present AMARESts, an exten
ion of AMARES which allows us to take into account in
tatistically optimal way the common information presen
pectra of a time series. The method performs very we
ractical situations. AMARESts leads to improved and mo
obust estimates than the ones obtained by processin
ignals individually with AMARES since in the latter case
nformation present between the spectra cannot be take
ccount. It is also straightforward to extend the ideas us

he derivation of the AMARESts algorithm to frequency do
ain fitting methods. The same concepts as explained in
aper can also be applied to MRSI. This is the subject of fu
esearch.
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